Pasar al contenido principal
Presentación
El Máster en Ingeniería y Diseño de Tuberías Industriales se presenta como una oportunidad única para adentrarte en un sector en plena expansión. La creciente demanda de infraestructura industrial eficiente y sostenible ha impulsado la relevancia de los profesionales capacitados en el diseño y gestión de sistemas de tuberías. A través de este máster, adquirirás habilidades avanzadas en el uso de herramientas CAD para el diseño en 2D y 3D, y en la representación gráfica de sistemas complejos. Te formarás en la selección de materiales adecuados, el dimensionado preciso y la automatización de instalaciones, aspectos críticos para garantizar la eficiencia y seguridad de las operaciones industriales. Este programa es ideal si buscas desarrollar competencias que te diferencien en el mercado laboral, permitiéndote liderar proyectos de ingeniería con un enfoque innovador y adaptado a las exigencias actuales del sector. Prepárate para transformar tu carrera y ser parte del futuro de la ingeniería industrial.
Para qué te prepara
El Máster en Ingeniería y Diseño de Tuberías Industriales te capacita para diseñar y gestionar sistemas de tuberías con precisión y eficiencia. Aprenderás a utilizar AutoCAD 2D y 3D para crear proyectos detallados y fotorrealistas. Podrás representar gráficamente esquemas de tuberías, realizar cálculos de dimensionado y automatizar instalaciones. Además, estarás preparado para interpretar planos y cumplir con normativas, asegurando la calidad y seguridad en la fabricación y montaje de tuberías industriales.
Objetivos
  • '
  • Analizar interfaces de usuario para mejorar la eficiencia en el diseño de tuberías con AutoCAD.
  • Aplicar coordenadas y unidades para la precisión en proyectos de tuberías industriales.
  • Implementar simbología gráfica en esquemas para una representación clara de tuberías.
  • Evaluar materiales y uniones para garantizar la durabilidad de instalaciones de tuberías.
  • Optimizar el dimensionado de tuberías considerando diámetros y espesores nominales.
  • Diseñar sistemas automáticos de tuberías empleando programas CAD
  • CAM avanzados.
  • Interpretar planos complejos para asegurar la correcta fabricación de tuberías industriales.
A quién va dirigido
El Máster en Ingeniería y Diseño de Tuberías Industriales está dirigido a ingenieros, arquitectos y técnicos del sector industrial que deseen profundizar en el diseño avanzado de tuberías utilizando herramientas como AutoCAD 2D y 3D. Ideal para profesionales interesados en actualizar sus conocimientos en representación gráfica, automatización de instalaciones y cálculo de dimensionado, garantizando un enfoque integral y técnico.
Salidas Profesionales
'- Diseño y supervisión de sistemas de tuberías en plantas industriales - Consultoría técnica en proyectos de instalaciones industriales - Desarrollo de planos y esquemas de tuberías utilizando software CAD - Gestión de proyectos de montaje y mantenimiento de tuberías - Análisis de flujo y optimización de sistemas de tuberías industriales - Asesoría en normativas y estándares de tuberías industriales - Implementación de tecnologías de automatización en tuberías industriales.
Metodología
Aprendizaje 100% online
Campus virtual
Equipo docente especializado
Centro del estudiante
Temario
  1. Introducción a Autocad
  2. Herramientas de la ventana de aplicación
  3. Ubicaciones de herramientas
  1. Trabajo con diferentes sistemas de coordenadas SCP
  2. Coordenadas cartesianas, polares
  3. Unidades de medida, ángulos, escala y formato de las unidades
  4. Referencia a objetos
  1. Abrir y guardar dibujo
  2. Capas
  3. Vistas de un dibujo
  4. Conjunto de planos
  5. Propiedades de los objetos
  1. Designación de objetos
  2. Dibujo de líneas
  3. Dibujo de rectángulos
  4. Dibujo de polígonos
  5. Dibujo de objetos de líneas múltiples
  6. Dibujo de arcos
  7. Dibujo de círculos
  8. Dibujo de arandelas
  9. Dibujo de elipses
  10. Dibujo de splines
  11. Dibujo de polilíneas
  12. Dibujo de puntos
  13. Dibujo de tablas
  14. Dibujo a mano alzada
  15. Notas y rótulos
  1. Bloque
  2. Sombreados y degradados
  3. Regiones
  4. Coberturas
  5. Nube de revisión
  1. Desplazamiento de objetos
  2. Giros de objetos
  3. Alineación de objetos
  4. Copia de objetos
  5. Creación de una matriz de objetos
  6. Desfase de objetos
  7. Reflejo de objetos
  8. Recorte o alargamiento de objetos
  9. Ajuste del tamaño o la forma de los objetos
  10. Creación de empalmes
  11. Creación de chaflanes
  12. Ruptura y unión de objetos
  1. Introducción
  2. Partes de una cota
  3. Definición de la escala de cotas
  4. Ajustar la escala general de las cotas
  5. Creación de cotas
  6. Estilos de cotas
  7. Modificación de cotas
  1. Cambio de vistas
  2. Utilización de las herramientas de visualización
  3. Presentación de varias vistas en espacio modelo
  1. Creación, composición y edición de objetos sólidos
  2. Creación de sólidos por extrusión, revolución, barrer y solevar
  1. Presentación general de la creación de mallas
  2. Creación de primitivas de malla 3D
  3. Construcción de mallas a partir de otros objetos
  4. Creación de mallas mediante conversión
  5. Creación de mallas personalizadas (originales)
  6. Creación de modelos alámbricos
  7. Adición de altura 3D a los objetos
  1. El comando Render
  2. Tipos de renderizado
  3. Ventana Render
  4. Otros controles del panel Render
  5. Aplicación de fondos
  6. Iluminación del diseño
  7. Aplicación de materiales
  1. Tipología de planos
  2. Técnicas de representación de tuberías
  3. Reglas generales de representación y acotación
  1. Normativa de esquemas: UNE 1062.
  2. Códigos de líneas.
  3. Válvulas y accesorios.
  4. Equipos.
  5. Instrumentación.
  6. Dispositivos autorreguladores.
  7. Sistemas de automatización de regulación y mando: eléctrica, neumática, hidráulica
  8. Listas de materiales
  9. Especificación en esquemas
  10. Normativa de seguridad.
  11. Software de diseño de esquemas de tuberías.
  1. Tubos metálicos: acero, fundición, cobre y aleaciones, aluminio y aleaciones, etc. Características, manipulación y comportamiento.
  2. Tubos no metálicos: PVC, polietileno, etc.
  3. Tubos normalizados. Gamas de diámetros y espesores de pared. Diámetro nominal. Formas comerciales.
  4. Elección del material según el fluido conducido.
  1. Materiales de las válvulas
  2. Tipos de válvulas
  3. Selección de válvulas
  4. Normativa de válvulas
  1. Tubería de acero
  2. Tubería de cobre
  3. Tubería de aluminio
  1. Diámetro de aspiración y diámetro de descarga.
  2. Tipos de accionamiento.
  3. Tipos de acoplamiento.
  1. Flujo laminar y flujo turbulento.
  2. Número de Reynolds.
  3. Velocidad media del fluido.
  4. Caudal másico.
  5. Balance de masa: Ecuación de continuidad.
  6. Balance de energía: Ecuación de Bernouilli.
  7. Presión en la tubería
  8. Coeficiente de seguridad.
  1. Normas americanas y europeas :ASTM, API, DIN, EROCÓDIGO.
  2. Diámetro óptimo de la tubería
  3. Calculo del espesor de pared
  4. Dilatación y elasticidad de las tuberías
  5. Soluciones para absorber la dilatación
  1. Concepto de pérdida de carga.
  2. Factores que influyen en las pérdidas de carga
  3. Fórmulas empíricas para el cálculo de pérdida de carga según el fluido.
  4. Pérdida de carga singulares
  5. Software para el cálculo de pérdidas de carga.
  1. Fundamentos físicos neumáticos, hidráulicos y eléctricos.
  2. Características básicas de los sistemas de automatización de procesos de distribución de fluidos.
  1. Tipos
  2. Sistemas neumáticos
  3. Sistemas hidráulicos
  4. Sistemas eléctricos
  1. Medidores de caudal.
  2. Medidores de presión.
  3. Medidores de temperatura.
  4. Medidores de nivel.
  5. Otros: turbidímetros, resistivímetros, medidores del ph, sedimómetros, densímetros.
  1. Concepto de fuerza y su representación.
  2. Composición, descomposición y equilibrio de fuerzas.
  3. Estructuras trianguladas. Cálculo resistencia materiales.
  4. Concepto de momento y par.
  5. Centro de gravedad: determinación.
  6. Momento de inercia y momento resistente.
  1. Tracción: Tensión admisible. Coeficiente de seguridad.
  2. Compresión: Pandeo
  3. Cortadura
  4. Flexión
  5. Torsión
  6. Coeficientes y tensiones
  7. Cálculo de una tubería. Fórmulas.
  8. Dilatación térmica. Compensadores de dilatación.
  1. Tuberías
  2. Accesorios
  3. Dilatadores
  4. Tipos de soportes y sujeción de tuberías.
  5. Anclajes utilizados en instalaciones de tuberías
  6. Polines. Factores a considerar en el diseño, para evitar vibraciones y roturas.
  7. Material de transporte.
  8. Empleo de las placas rótulo en instalaciones de tubería.
  9. Factores a tener en cuenta en el rutado de tubería:
  10. Direccionamiento y secuencias de montaje en función de las interferencias.
  1. Sistemas de representación de vistas ortogonales (europeo y americano) isométricos y esquemáticos.
  2. Representación isométrica de los elementos de una instalación de tubería
  3. Software más utilizado para obtención de isométricas de tubería.
  1. Operaciones de mecanizado para preparación de uniones
  2. Operaciones de conformado y curvado de tubería industrial
  3. Corte de tubería industrial
  4. Equipo de oxicorte
  5. Equipo de arco plasma
  6. Corte mecánico
  1. Procedimientos de soldadura
  2. Soldeo TIG
  3. Soldeo por capilaridad
  4. Soldeo por resistencia por espárragos:
  5. Soldeo de plásticos.
  6. Tipos de cordones de soldadura.
  7. Cálculo práctico de uniones soldadas sometidas a carga estática y variable
  8. Aplicación de normas y tablas en uniones soldadas.
  9. Deformaciones y tensiones en la unión soldada. Corrección de deformaciones.
  1. Pruebas y ensayos a realizar según normativa vigente
  2. Determinación de los elementos de seguridad y control necesarios.
  3. Especificación de elementos a proteger
  1. Necesidades que hay que considerar en el desarrollo de un proyecto de tubería industrial.
  2. Componentes de un proyecto.
  3. Proyectos de tubería en nave industrial.
  4. Normas de seguridad y medioambiente.
  1. Configuración de parámetros del programa de diseño utilizado.
  2. Captura de componentes en las librerías del programa de diseño utilizado.
  3. Creación e incorporación de nuevos componentes.
  4. Elección de las vistas y detalles de las piezas a representar.
  5. Realización de los planos constructivos de los productos.
  6. Representación de procesos, movimientos, mandos y diagramas de flujo.
  7. Edición de atributos.
  8. Realización de los esquemas de automatización.
  9. Interconexión de componentes.
  10. Obtención del listado de conexiones.
  11. Creación de ficheros (componentes y conexiones).
  12. Impresión de planos.
  1. Análisis del producto y elaboración del proceso de diseño.
  2. Sistemas y procesos de transferencia y carga de programas CAM.
  3. Identificación de las especificaciones técnicas de los planos (medidas, tolerancias, materiales, tratamientos).
  4. Asignación de herramientas y medios auxiliares en mecanización.
  5. Simulación, verificación y optimización de programas CAM.
  6. Transferencia de la programación CAM a la máquina de control numérico.
  1. Estudio del producto y del proceso de mecanizado.
  2. Lenguajes de programación ISO y otros.
  3. Tecnología de programación CNC.
  4. Identificación de las especificaciones técnicas de los planos de fabricación (medidas, tolerancias, materiales, tratamientos).
  5. Asignación de herramientas y medios auxiliares para una mecanización determinada.
  6. Sistemas y procesos de transferencia y carga de programas CNC en el centro de mecanizado.
  7. Simulación, verificación y optimización de programas CNC.
  1. Procesadores de texto
  2. Bases de datos.
  3. Hojas de cálculo.
  4. Presentaciones.
  5. Paginas Web.
  6. Internet para el desarrollo profesional.
  1. Procedimientos de actualización de documentos
  2. Organización de la información de un proyecto
  3. Manual de uso del producto
  4. Procedimientos de actualización de documentos.
  1. Sistemas de representación: perspectiva caballera, axonométrica, isométrica.
  2. Escalas más usuales.
  3. Tipos de líneas empleadas en planos.
  4. Vistas de un objeto.
  5. Representación de cortes, secciones y detalles.
  6. Croquizado.
  7. El acotado en el dibujo. Normas de acotado.
  8. Representación de perfiles normalizados.
  9. Uniones remachadas y atornilladas: normativa, representación de detalles con uniones remachadas y atornilladas.
  10. Uniones soldadas: Normativa, representación de detalles y piezas con uniones soldadas.
  11. Estado superficial. Tolerancias dimensionales y de forma.
  12. Representación de elementos relacionados con las construcciones metálicas:
  13. Planos de naves industriales: planta de estructura, pilares, cerchas, vigas, secciones y detalles.
  14. Planos de calderería: calderas, depósitos, etc.
  15. Planos de conjunto de tuberías: bridas, diafragmas, derivaciones, conexiones, etc. Soportes utilizados en tubería. Representación isométrica de tuberías.
  1. Desarrollos inmediatos (prismas, cilindros rectos, conos rectos).
  2. Método de las generatrices (conos y cilindros rectos truncados por uno o dos planos).
  3. Método de triangulación (cilindros oblicuos, conos oblicuos, tolvas, transformadores, etc.).
  4. Método de intersecciones (pantalones, intersecciones totales, etc.
  1. Definición de rectas, ángulos, triángulos, cuadriláteros y curvas cerradas planas.
  2. Rectas perpendiculares, oblicuas y paralelas.
  3. Triángulos.
  4. Cuadriláteros.
  5. La circunferencia:
  6. Espirales: aplicación de las mismas.
  7. Óvalo, aovada, elipse.
  8. La parábola: su aplicación en tuberías.
  1. Relación entre las vistas de un objeto.
  2. Vistas posibles y vistas necesarias y suficientes.
  3. Vistas más utilizadas en planos de tubería.
  4. Croquizado de las piezas.
  5. Clasificación de los sistemas de representación de vistas.
  6. Sistemas de representación de vistas ortogonales (europeo y americano) isométricos y esquemáticos.
  1. Tipos de líneas empleadas en los planos.
  2. Representación de cortes, secciones y detalles.
  3. El acotado en el dibujo.
  4. Simbologías empleadas en los planos.
  1. Representación gráfica de perfiles y medidas de la sección de los mismos.
  2. Representación gráfica de bridas, diafragmas, derivaciones, conexiones, juntas de expansión, tubos de dilatación y llaves de paso en el sistema ortogonal.
  3. Representación gráfica de soportes utilizados en tubería.
  4. Representación de taladros, pasantes y roscados.
  5. Diferencias, equivalencias y representación de los tipos de roscas más empleadas: métrica, whitworth y gas.
  6. Cálculo de abrazaderas y zunchos.
  7. La escala en los planos
  8. Uso del escalímetro.
  9. Estudio de planos de conjunto.
  10. Significado y utilización del diámetro nominal.
  11. Documentación técnica en la fabricación de tuberías.
  12. Especificaciones para el control de calidad:
  13. Tolerancias.
  14. Características a controlar.
  15. Útiles de medida y comprobación: pautas de control.
  1. Útiles de dibujo y de trazado.
  2. Construcción de plantillas y útiles de trazado.
  3. Marcas para la identificación de elementos.
  1. Trazado de ángulos, triángulos y cuadriláteros.
  2. Trazado de figuras planas determinadas por planos o croquis.
  3. Generatrices en cilindros y conos.
  4. Desarrollo de superficies cilíndricas.
  5. Trazado y desarrollo de codos cilíndricos de una, dos, tres o más secciones.
  6. Trazado y desarrollo de injertos de igual y distinto diámetro.
  7. Desarrollo de reducciones concéntricas y excéntricas.
  8. Sistemas de trazado.
  9. Tipos y utilización de reducciones en tubería.
  1. Tipos de materiales empleados en la fabricación de tubos.
  2. Tubos normalizados.
  1. Control dimensional.
  2. Tolerancias.
  3. Causas de deformaciones y procedimientos de corrección.
  4. Seguridad en el manejo y mantenimiento de las herramientas de dibujo y trazado.
Titulación
Titulación de Máster en Ingeniería y Diseño de Tuberías Industriales con 1500 horas expedida por EDUCA BUSINESS SCHOOL como Escuela de Negocios Acreditada para la Impartición de Formación Superior de Postgrado, con Validez Profesional a Nivel Internacional
¡

Entidades colaboradoras

Logo Educa Logo educa edtech
Logo QS