Pasar al contenido principal
Presentación
El Máster en Desarrollo de Inteligencia Artificial para Programadores se posiciona como una formación esencial en un sector en pleno auge. La inteligencia artificial está transformando industrias a una velocidad sin precedentes, generando una demanda creciente de profesionales capacitados. Este máster te ofrece la oportunidad de dominar técnicas avanzadas como el aprendizaje automático, redes neuronales y procesamiento de lenguaje natural. A través de módulos específicos, explorarás desde la minería de datos hasta la integración de herramientas Copilot, y la programación de visión artificial con Python y OpenCV. Este enfoque integral no solo amplía tus capacidades técnicas, sino que también te prepara para ser un innovador en el campo de la IA. Al elegir este máster, te posicionarás a la vanguardia de la tecnología, adquiriendo habilidades que son altamente valoradas en el mercado laboral global. Con un enfoque online, podrás aprender a tu ritmo, asegurando una formación adaptada a tus necesidades y horarios.
Para qué te prepara
El Máster en Desarrollo de Inteligencia Artificial para Programadores te capacita para enfrentar desafíos complejos en el ámbito de la IA. Aprenderás a aplicar técnicas avanzadas de minería de datos y machine learning, desarrollar sistemas expertos y de recomendación, y optimizar modelos de IA. Además, serás capaz de integrar chatbots avanzados mediante Chat GPT y utilizar herramientas como OpenCV para visión artificial. Este máster te prepara para innovar y liderar en la evolución tecnológica actual.
Objetivos
  • '
  • Aprender a implementar algoritmos de clustering para la extracción de estructuras de datos.
  • Desarrollar sistemas de recomendación utilizando técnicas avanzadas de clasificación.
  • Diseñar redes neuronales aplicando conceptos de deep learning para mejorar modelos predictivos.
  • Aplicar procesamiento de lenguaje natural en Python para crear chatbots eficientes.
  • Integrar Chat GPT en aplicaciones web para optimizar la interacción con el usuario.
  • Implementar modelos de aprendizaje por refuerzo para optimización de decisiones.
  • Desplegar modelos de IA en producción asegurando rendimiento y escalabilidad.
A quién va dirigido
El Máster en Desarrollo de Inteligencia Artificial para Programadores está diseñado para programadores y profesionales de la tecnología que buscan especializarse en IA. Dirigido a aquellos interesados en data mining, redes neuronales, machine learning y visión artificial, este máster avanzado ofrece herramientas para integrar IA en proyectos complejos, optimizando procesos y mejorando la interacción con usuarios a través de chatbots y PLN.
Salidas Profesionales
'- Científico de datos - Ingeniero de aprendizaje automático - Desarrollador de sistemas de recomendación - Especialista en procesamiento de lenguaje natural - Ingeniero de visión artificial - Desarrollador de chatbots - Analista de big data - Ingeniero de redes neuronales - Consultor en inteligencia artificial aplicada - Especialista en robótica e inteligencia artificial
Metodología
Aprendizaje 100% online
Campus virtual
Equipo docente especializado
Centro del estudiante
Temario
  1. Minería de datos
  2. ¿Qué podemos hacer con data Mining?
  3. ¿Qué usos puede tener el data Mining?
  4. Metodología de la minería de datos
  5. Algunas técnicas estadísticas utilizadas en data mining
  6. Árboles de decisión
  7. Reglas de inducción
  8. Redes Bayesanas
  9. Algoritmos Genéticos
  1. Ciclo data mining
  2. Minería de Textos y Web Mining
  3. Data mining y marketing
  1. Introducción a la inteligencia artificial
  2. Historia
  3. La importancia de la IA
  1. Algoritmos aplicados a la inteligencia artificial
  1. Relación entre inteligencia artificial y big data
  2. IA y Big Data combinados
  3. El papel del Big Data en IA
  4. Tecnologías de IA que se están utilizando con Big Data
  1. Sistemas expertos
  2. Estructura de un sistema experto
  3. Inferencia: Tipos
  4. Fases de construcción de un sistema
  5. Rendimiento y mejoras
  6. Dominios de aplicación
  7. Creación de un sistema experto en C#
  8. Añadir incertidumbre y probabilidades
  1. Introducción
  2. Clasificación de algoritmos de aprendizaje automático
  3. Ejemplos de aprendizaje automático
  4. Diferencias entre el aprendizaje automático y el aprendizaje profundo
  5. Tipos de algoritmos de aprendizaje automático
  6. El futuro del aprendizaje automático
  1. Introducción
  2. Filtrado colaborativo
  3. Clusterización
  4. Sistemas de recomendación híbridos
  1. Clasificadores
  2. Algoritmos
  1. Introducción
  2. El proceso de paso de DSS a IDSS
  3. Casos de aplicación
  1. ¿Qué es PLN?
  2. ¿Qué incluye el PLN?
  3. Ejemplos de uso de PLN
  4. Futuro del PLN
  1. PLN en Python con la librería NLTK
  2. Otras herramientas para PLN
  1. Principios del análisis sintáctico
  2. Gramática libre de contexto
  3. Analizadores sintácticos (Parsers)
  1. Aspectos introductorios del análisis semántico
  2. Lenguaje semántico para PLN
  3. Análisis pragmático
  1. Aspectos introductorios
  2. Pasos en la extracción de información
  3. Ejemplo PLN
  4. Ejemplo PLN con entrada de texto en inglés
  1. Aspectos introductorios
  2. ¿Qué es un chatbot?
  3. ¿Cómo funciona un chatbot?
  4. VoiceBots
  5. Desafios para los Chatbots
  1. Chatbots y el papel de la Inteligencia Artificial (IA)
  2. Usos y beneficios de los chatbots
  3. Diferencia entre bots, chatbots e IA
  1. Áreas de aplicación de Chatbots
  2. Desarrollo de un chatbot con ChatterBot y Python
  3. Desarrollo de un chatbot para Facebook Messenger con Chatfuel
  1. ¿Qué es Chat GPT?
  2. Cómo afecta la inteligencia artificial en Chat GPT?
  3. Versiones de Chat GPT y funcionalidades
  4. Usos de Chat GPT
  5. Beneficios de la IA y Chat GPT
  1. ¿Cómo funciona Chat GPT?
  2. Diferencias entre Chat GPT y otros chatbots
  3. Procesamiento del Lenguaje Natural (PLN)
  4. Aprendizaje por transferencia
  5. Cómo entrenar un modelo de Chat GPT
  1. Elección de la plataforma de desarrollo
  2. Configuración del entorno de desarrollo
  3. Preparación de los datos de entrenamiento
  4. Entrenamiento del modelo de Chat GPT
  5. Integración del modelo en el chatbot
  6. Pruebas y mejora del modelo
  1. Análisis de la conversación con el usuario
  2. Personalización de la conversación
  3. Uso de emojis y respuestas con imágenes
  4. Integración de voz y audio
  5. Respuestas multilingües
  1. Integración del chatbot en una página web
  2. Integración del chatbot en una aplicación móvil
  3. Personalización del aspecto del chatbot
  4. Gestión de la seguridad y privacidad del usuario
  1. Modelos de negocio para chatbots
  2. Monetización a través de publicidad
  3. Monetización a través de suscripciones
  4. Monetización a través de compras in-app
  5. Análisis del rendimiento y la rentabilidad
  1. Aspectos éticos y responsabilidad en la IA
  2. Sesgos en la IA y cómo evitarlos
  3. Derechos y privacidad del usuario
  4. Regulaciones y normativas sobre chatbots
  5. Responsabilidad social y ambiental
  1. Chatbots para atención al cliente
  2. Chatbots para servicios financieros
  3. Chatbots para servicios de salud
  4. Chatbots para educación
  5. Chatbots para entretenimiento y ocio
  1. Plataformas de desarrollo de Chatbots
  2. Librerías y frameworks para el desarrollo de IA
  3. Bases de datos y almacenamiento
  4. Recursos de formación y aprendizaje
  5. Comunidades y grupos de apoyo para desarrolladores
  1. Desarrollo de un Chatbot avanzado
  2. Caso de estudio en atención al cliente
  3. Caso de estudio en educación
  4. Caso de estudio en salud
  5. Caso de estudio en ocio
  1. Concepto e historia
  2. Bases de la robótica actual
  3. Plataformas móviles
  4. Crecimiento esperado en la industria robótica
  5. Límites de la robótica actual
  1. Robótica
  2. Inteligencia artificial
  3. Objetivos de la inteligencia artificial
  4. Historia de la inteligencia artificial
  5. Lenguaje de programación: el idioma de los robots
  6. Investigación y desarrollo en áreas de la inteligencia artificial
  7. Robótica y la inteligencia artificial
  1. Introducción
  2. Robótica y beneficios
  3. Robótica industrial
  4. Futuro de la robótica
  5. Robótica y las nuevas tecnologías
  6. Tendencias
  1. Evolución de la robótica
  2. Futuro de la robótica
  3. Robótica en la ingeniería e industria
  1. Inteligencia natural y artificial
  2. Inteligencia artificial y cibernética
  3. Autonomía en robótica
  4. Sistemas expertos
  5. Agentes virtuales con animación facial por ordenador
  6. Actualidad
  1. La robótica aplicada al ser humano: biónica
  2. Reseña histórica de las prótesis
  3. Diseño de prótesis en el siglo XX
  4. Investigaciones y desarrollo recientes en diseño de manos
  5. Sistemas protésicos
  6. Uso de materiales inteligentes en las prótesis
  1. Introducción
  2. Situación actual y tendencias para el futuro
  3. Objetivos
  4. Metodología y estructura
  1. Introducción, concepto y funciones de la estadística
  2. Estadística descriptiva
  3. Estadística inferencial
  4. Medición y escalas de medida
  5. Variables: clasificación y notación
  6. Distribución de frecuencias
  7. Representaciones gráficas
  8. Propiedades de la distribución de frecuencias
  9. Medidas de posición
  10. Medidas de dispersión
  11. Medidas de forma
  12. Curva de Lorenz, coeficiente de Gini e índice de Theil
  1. Introducción al análisis conjunto de variables
  2. Asociación entre dos variables cualitativas
  3. Correlación entre dos variables cuantitativas
  4. Regresión lineal
  1. Conceptos previos de probabilidad
  2. Variables discretas de probabilidad
  3. Distribuciones discretas de probabilidad
  4. Distribución normal
  5. Distribuciones asociadas a la distribución normal
  1. Conceptos previos
  2. Métodos de muestreo
  3. Principales indicadores
  1. Introducción a las hipótesis estadísticas
  2. Contraste de hipótesis
  3. Contraste de hipótesis paramétrico
  4. Tipologías de error
  5. Contrastes no paramétricos
  1. Introducción a los modelos de regresión
  2. Modelos de regresión: aplicabilidad
  3. Variables a introducir en el modelo de regresión
  4. Construcción del modelo de regresión
  5. Modelo de regresión lineal
  6. Modelo de regresión logística
  7. Factores de confusión
  8. Interpretación de los resultados de los modelos de regresión
  1. Estadística no paramétrica. Conceptos básicos
  2. Características de las pruebas
  3. Ventajas y desventajas del uso de métodos no paramétricos
  4. Identificación de las diferentes pruebas no paramétricas
  1. Pruebas no paramétricas para una muestra
  2. Chi-cuadrado o ji-cuadrado
  3. Prueba de Kolmogorov-Smirnov para una muestra
  4. Prueba binomial
  5. Prueba de rachas
  1. Prueba de los signos
  2. Prueba del rango con signo de Wilcoxon
  3. Prueba de McNemar
  1. Pruebas para k muestras relacionadas
  2. Prueba de Cochran
  3. Prueba de Friedman
  4. Coeficiente de concordancia de W de Kendall
  1. Pruebas para dos muestras independientes
  2. Prueba U de Mann Whitney
  3. Prueba de Wald-Wolfowitz
  4. Prueba de reacciones extremas de Moses
  5. Prueba de Kolmogorov-Smirnov para dos muestras
  1. Pruebas no paramétricas para K muestras independientes
  2. Prueba de la mediana
  3. Prueba H de Kruskal-Wallis
  4. Prueba de Jonckheere-Terpstra
  1. Descripción general OpenCV
  2. Instalación OpenCV para Python en Windows
  3. Instalación OpenCV para Python en Linux
  4. Anaconda y OpenCV
  1. Manejo de archivos
  2. Leer una imagen con OpenCV
  3. Mostrar imagen con OpenCV
  4. Guardar una imagen con OpenCV
  5. Operaciones aritméticas en imágenes usando OpenCV
  6. Funciones de dibujo
  1. Redimensión de imágenes
  2. Erosión de imágenes
  3. Desenfoque de imágenes
  4. Bordeado de imágenes
  5. Escala de grises en imágenes
  6. Escalado, rotación, desplazamiento y detección de bordes
  7. Erosión y dilatación de imágenes
  8. Umbrales simples
  9. Umbrales adaptativos
  10. Umbral de Otsu
  11. Contornos de imágenes
  12. Incrustación de imágenes
  13. Intensidad en imágenes
  14. Registro de imágenes
  15. Extracción de primer plano
  16. Operaciones morfológicas en imágenes
  17. Pirámide de imágen
  1. Analizar imágenes usando histogramas
  2. Ecualización de histogramas
  3. Template matching
  4. Detección de campos en documentos usando Template matching
  1. Espacios de color en OpenCV
  2. Cambio de espacio de color
  3. Filtrado de color
  4. Denoising de imágenes en color
  5. Visualizar una imagen en diferentes espacios de color
  1. Detección de líneas
  2. Detección de círculos
  3. Detectar esquinas (Método Shi-Tomasi)
  4. Detectar esquinas (método Harris)
  5. Encontrar círculos y elipses
  6. Detección de caras y sonrisas
  1. Vecino más cercano (K-Nearest Neighbour)
  2. Agrupamiento de K-medias (K-Means Clustering)
Titulación
Titulación de Máster en Desarrollo de Inteligencia Artificial para Programadores con 1500 horas expedida por EDUCA BUSINESS SCHOOL como Escuela de Negocios Acreditada para la Impartición de Formación Superior de Postgrado, con Validez Profesional a Nivel Internacional
¡

Entidades colaboradoras

Logo Educa Logo educa edtech
Logo QS