Pasar al contenido principal
Presentación
El Máster en Aplicaciones Prácticas de la Inteligencia Artificial te sitúa en la vanguardia de un sector en pleno auge, donde la demanda de profesionales capacitados supera la oferta. La IA no es solo el futuro, es el presente, transformando industrias y redefiniendo el mercado laboral. Este máster te ofrece una formación integral, desde el Big Data y la Ciencia de Datos hasta el Machine Learning, Deep Learning y la Visión Artificial, proporcionándote habilidades prácticas altamente valoradas. Aprenderás a manejar herramientas como Python, TensorFlow y OpenCV, esenciales para la innovación tecnológica. Además, la inclusión de módulos sobre ética en IA asegura que estés preparado para abordar los desafíos morales y sociales de este ámbito. Optar por este máster significa posicionarte como un líder en un campo que está dando forma a nuestro mundo digital. ¡Inscríbete y sé parte del cambio!
Para qué te prepara
El Máster en Aplicaciones Prácticas de la Inteligencia Artificial te prepara para abordar desafíos complejos en el mundo del Big Data y la IA. Aprenderás a gestionar grandes volúmenes de información, diseñar sistemas de recomendación y aplicar algoritmos de machine learning. Podrás integrar modelos de IA en aplicaciones reales, optimizando procesos y mejorando la toma de decisiones. Además, adquirirás habilidades para emplear herramientas como Python y TensorFlow, incluyendo la ética en la IA, garantizando soluciones responsables y sostenibles.
Objetivos
  • '
  • Desarrollar modelos de machine learning con Python y TensorFlow aplicados a datos reales.
  • Implementar sistemas de recomendación utilizando técnicas avanzadas de clustering.
  • Analizar grandes volúmenes de datos mediante técnicas de minería de datos y data mining.
  • Diseñar redes neuronales para resolver problemas complejos de clasificación y regresión.
  • Evaluar la ética y el sesgo en aplicaciones de inteligencia artificial y su impacto social.
  • Crear chatbots con Chat GPT integrando funciones avanzadas de interacción con usuarios.
  • Aplicar visión artificial para optimizar procesos industriales en la Industria 4.0.
A quién va dirigido
El Máster en Aplicaciones Prácticas de la Inteligencia Artificial está dirigido a profesionales y titulados en áreas como informática, ingeniería, matemáticas y ciencias, interesados en profundizar en Big Data, Machine Learning, y AI. Este programa avanzado ofrece una sólida formación en tecnologías emergentes, desde Python y R hasta la ética en inteligencia artificial, potenciando su desarrollo profesional.
Salidas Profesionales
'- Científico de datos en grandes corporaciones - Ingeniero de machine learning en startups tecnológicas - Especialista en visión artificial para la industria 4.0 - Desarrollador de chatbots con IA avanzada - Consultor en ética y gobernanza de inteligencia artificial - Analista de big data en sectores de marketing digital - Experto en sistemas de recomendación y personalización
Metodología
Aprendizaje 100% online
Campus virtual
Equipo docente especializado
Centro del estudiante
Temario
  1. ¿Qué es Big Data?
  2. La era de las grandes cantidades de información: historia del big data
  3. La importancia de almacenar y extraer información
  4. Big Data enfocado a los negocios
  5. Open data
  6. Información pública
  7. IoT (Internet of Things-Internet de las cosas)
  1. Diagnóstico inicial
  2. Diseño del proyecto
  3. Proceso de implementación
  4. Monitorización y control del proyecto
  5. Responsable y recursos disponibles
  6. Calendarización
  7. Alcance y valoración económica del proyecto
  1. Definiendo el concepto de Business Intelligence y sociedad de la información
  2. Arquitectura de una solución Business Intelligence
  3. Business Intelligence en los departamentos de la empresa
  4. Conceptos de Plan Director, Plan Estratégico y Plan de Operativa Anual
  5. Sistemas Operacionales y Procesos ETL en un sistema de BI
  6. Ventajas y Factores de Riesgos del Business Intelligence
  1. Cuadros de Mando Integrales (CMI)
  2. Sistemas de Soporte a la Decisión (DSS)
  3. Sistemas de Información Ejecutiva (EIS)
  1. Introducción a la minería de datos y el aprendizaje automático
  2. Proceso KDD
  3. Modelos y Técnicas de Data Mining
  4. Áreas de aplicación
  5. Minería de Textos y Web Mining
  6. Data mining y marketing
  1. Aproximación al concepto de DataMart
  2. Bases de datos OLTP
  3. Bases de Datos OLAP
  4. MOLAP, ROLAP & HOLAP
  5. Herramientas para el desarrollo de cubos OLAP
  1. Visión General: ¿Por qué DataWarehouse?
  2. Estructura y Construcción
  3. Fases de implantación
  4. Características
  5. Data Warehouse en la nube
  1. ¿Qué es el Data Storytelling?
  2. Elementos clave del Data Storytelling
  3. ¿Por qué es importante el Data Storytelling?
  4. ¿Cómo hacer Data Storytelling?
  1. ¿Qué es la ciencia de datos?
  2. Herramientas necesarias para el científico de datos
  3. Data Science & Cloud Computing
  4. Aspectos legales en Protección de Datos
  1. ¿Qué es Weka?
  2. Técnicas de Data Mining en Weka
  3. Interfaces de Weka
  4. Selección de atributos
  1. Introducción a Python
  2. ¿Qué necesitas?
  3. Librerías para el análisis de datos en Python
  4. MongoDB, Hadoop y Python. Dream Team del Big Data
  1. Introducción a R
  2. ¿Qué necesitas?
  3. Tipos de datos
  4. Estadística Descriptiva y Predictiva con R
  5. Integración de R en Hadoop
  1. Obtención y limpieza de los datos (ETL)
  2. Inferencia estadística
  3. Modelos de regresión
  4. Pruebas de hipótesis
  1. Inteligencia Analítica de negocios
  2. La teoría de grafos y el análisis de redes sociales
  3. Presentación de resultados
  1. Introducción a la inteligencia artificial
  2. Historia
  3. La importancia de la IA
  1. Algoritmos aplicados a la inteligencia artificial
  1. Relación entre inteligencia artificial y big data
  2. IA y Big Data combinados
  3. El papel del Big Data en IA
  4. Tecnologías de IA que se están utilizando con Big Data
  1. Sistemas expertos
  2. Estructura de un sistema experto
  3. Inferencia: Tipos
  4. Fases de construcción de un sistema
  5. Rendimiento y mejoras
  6. Dominios de aplicación
  7. Creación de un sistema experto en C#
  8. Añadir incertidumbre y probabilidades
  1. Futuro de la inteligencia artificial
  2. Impacto de la IA en la industria
  3. El impacto económico y social global de la IA y su futuro
  1. Introducción
  2. Clasificación de algoritmos de aprendizaje automático
  3. Ejemplos de aprendizaje automático
  4. Diferencias entre el aprendizaje automático y el aprendizaje profundo
  5. Tipos de algoritmos de aprendizaje automático
  6. El futuro del aprendizaje automático
  1. Introducción
  2. Filtrado colaborativo
  3. Clusterización
  4. Sistemas de recomendación híbridos
  1. Clasificadores
  2. Algoritmos
  1. Introducción
  2. El proceso de paso de DSS a IDSS
  3. Casos de aplicación
  1. Aprendizaje profundo
  2. Entorno de Deep Learning con Python
  3. Aprendizaje automático y profundo
  1. Redes neuronales
  2. Redes profundas y redes poco profundas
  1. Perceptrón de una capa y multicapa
  2. Ejemplo de perceptrón
  1. Tipos de redes profundas
  2. Trabajar con TensorFlow y Python
  1. Entrada y salida de datos
  2. Entrenar una red neuronal
  3. Gráficos computacionales
  4. Implementación de una red profunda
  5. El algoritmo de propagación directa
  6. Redes neuronales profundas multicapa
  1. Cómo usar loc en Pandas
  2. Cómo eliminar una columna en Pandas
  1. Pivot tables en pandas
  1. Python Pandas fusionando marcos de datos
  1. Algortimo de Naive bayes
  2. Tipos de Naive Bayes
  1. Máquinas de vectores soporte (Support Vector Machine-SVM)
  2. ¿Cómo funciona SVM?
  3. Núcleos SVM
  4. Construcción de clasificador en Scikit-learn
  1. K-nearest Neighbors (KNN)
  2. Implementación de Python del algoritmo KNN
  1. Algorimto de Random Forest
  1. Ética normativa y ética aplicada
  2. Historia y caracteres de la ética de la inteligencia artificial
  3. Ética realista y ética ficción
  4. Inteligencia artificial como objeto y sujeto
  5. Singularidad tecnológica y futuro de la especie humana
  6. Machine ethics. Nuevos entes autónomos y estatus moral
  7. Controversias éticas de la aplicación de la inteligencia artificial
  8. Bioética e inteligencia artificial
  9. Democracia e inteligencia artificial
  1. Gobernanza como sistema de prevención y control de riesgos en la inteligencia artificial
  2. Papel de la UE en la gobernanza de la inteligencia artificial
  3. Evaluaciones de impacto social, ético y legal de inteligencia artificial de alto riesgo
  4. Elaboración de un plan de gobernanza
  1. Principios de la inteligencia artificial responsable
  2. Aspectos de diseño éticos para Machine Learning
  3. Inteligencia artificial explicable (XAI). Hacia la IA responsable
  4. Imparcialidad de Datos (Fairness). Control del sesgo en los modelos
  5. Escenarios con modelos de IA de alto riesgo
  6. Auditabilidad en los sistemas de inteligencia artificial
  7. Sandbox normativo piloto del futuro reglamentario de IA en España
  8. Transparencia en modelos de Machine Learning
  9. Análisis de herramientas software para medir la imparcialidad
  1. Metodología de la ética en la inteligencia artificial
  2. Agentes artificiales morales
  3. Moralidad artificial desde un enfoque funcionalista
  4. Objeciones acerca de agencias morales artificiales
  5. Responsabilidad y Derechos de los robots
  1. Introducción a la filosofía política de la inteligencia artificial
  2. Empleo e inteligencia artificial
  3. Relaciones humanas e inteligencia artificial
  4. Funciones de los Estados e inteligencia artificial
  5. Educación e inteligencia artificial
  6. Salud e inteligencia artificial
  7. Movilidad e inteligencia artificial
  8. Articulación entre ética y política sobre la inteligencia artificial
  9. Globalización e inteligencia artificial
  1. Digitalización al servicio de los Objetivos de Desarrollo Sostenible (ODS)
  2. Estrategia Europea de transición hacia una economía sostenible
  3. Cambio climático global
  4. Mejora de eficiencia en procesos organizativos con IA.
  5. Mejora de eficiencia en prácticas individuales con IA.
  6. Ética ambiental e inteligencia artificial
  1. Armas autónomas
  2. Intervenciones militares teledirigidas
  3. Ética de la guerra
  1. El metaverso
  2. Gemelos digitales humanos
  3. Creación de universos paralelos en 3D
  1. Sistemas autónomos en el ámbito laboral
  2. Inteligencia artificial para la mejora de calidad de vida en ciudades. Mejora del impacto medioambiental
  3. Combinación de smart cities, internet de las cosas y big data
  4. Inteligencia artificial y cuidado personal y sexual
  5. Análisis ético de la incorporación de la robótica en la vida humana
  1. Inteligencia artificial para restaurar funciones físicas y cognitivas deterioradas
  2. Optimizar las capacidades humanas con inteligencia artificial
  3. Debate académico sobre transhumanismo y poshumanismo
  1. ¿Qué es PLN?
  2. ¿Qué incluye el PLN?
  3. Ejemplos de uso de PLN
  4. Futuro del PLN
  1. PLN en Python con la librería NLTK
  2. Otras herramientas para PLN
  1. Principios del análisis sintáctico
  2. Gramática libre de contexto
  3. Analizadores sintácticos (Parsers)
  1. Aspectos introductorios del análisis semántico
  2. Lenguaje semántico para PLN
  3. Análisis pragmático
  1. Aspectos introductorios
  2. Pasos en la extracción de información
  3. Ejemplo PLN
  4. Ejemplo PLN con entrada de texto en inglés
  1. Aspectos introductorios
  2. ¿Qué es un chatbot?
  3. ¿Cómo funciona un chatbot?
  4. VoiceBots
  5. Desafios para los Chatbots
  1. Chatbots y el papel de la Inteligencia Artificial (IA)
  2. Usos y beneficios de los chatbots
  3. Diferencia entre bots, chatbots e IA
  1. Áreas de aplicación de Chatbots
  2. Desarrollo de un chatbot con ChatterBot y Python
  3. Desarrollo de un chatbot para Facebook Messenger con Chatfuel
  1. 1.¿Qué es Chat GPT?
  2. Cómo afecta la inteligencia artificial en Chat GPT?
  3. Versiones de Chat GPT y funcionalidades
  4. Usos de Chat GPT
  5. Beneficios de la IA y Chat GPT
  1. ¿Cómo funciona Chat GPT?
  2. Diferencias entre Chat GPT y otros chatbots
  3. Procesamiento del Lenguaje Natural (PLN)
  4. Aprendizaje por transferencia
  5. Cómo entrenar un modelo de Chat GPT
  1. Elección de la plataforma de desarrollo
  2. Configuración del entorno de desarrollo
  3. Preparación de los datos de entrenamiento
  4. Entrenamiento del modelo de Chat GPT
  5. Integración del modelo en el chatbot
  6. Pruebas y mejora del modelo
  1. Análisis de la conversación con el usuario
  2. Personalización de la conversación
  3. Uso de emojis y respuestas con imágenes
  4. Integración de voz y audio
  5. Respuestas multilingües
  1. Integración del chatbot en una página web
  2. Integración del chatbot en una aplicación móvil
  3. Personalización del aspecto del chatbot
  4. Gestión de la seguridad y privacidad del usuario
  1. Modelos de negocio para chatbots
  2. Monetización a través de publicidad
  3. Monetización a través de suscripciones
  4. Monetización a través de compras in-app
  5. Análisis del rendimiento y la rentabilidad
  1. Aspectos éticos y responsablidad en la IA
  2. Sesgos en la IA y cómo evitarlos
  3. Derechos y privacidad del usuario
  4. Regulaciones y normativas sobre chatbots
  5. Responsabilidad social y ambiental
  1. Chatbots para atención al cliente
  2. Chatbots para servicios financieros
  3. Chatbots para servicios de salud
  4. Chatbots para educación
  5. Chatbots para entretenimiento y ocio
  1. Plataformas de desarrollo de Chatbots
  2. Librerías y frameworks para el desarrollo de IA
  3. Bases de datos y almacenamiento
  4. Recursos de formación y aprendizaje
  5. Comunidades y grupos de apoyo para desarrolladores
  1. Desarrollo de un Chatbot avanzado
  2. Caso de estudio en atención al cliente
  3. Caso de estudio en educación
  4. Caso de estudio en salud
  5. Caso de estudio en ocio
  1. ¿Qué es la inteligencia artificial?
  2. Hardware y software unidos por la Inteligencia Artificial
  3. Inteligencia Artificial y Visión Artificial
  4. Arduino: introducción
  1. Instalación de Arduino
  2. Configurando tu Arduino para Python
  1. Salidas analógicas
  2. Valores analógicos en Arduino
  1. Introducción al machine learning
  2. Aprendizaje supervisado
  3. Aprendizaje no supervisado
  1. Funciones y parámetros
  2. Variables y constantes especializadas
  3. Estructura de control
  1. Introducción
  2. ¿Qué son los datos de entrenamiento de IA?
  3. ¿Por qué se requieren datos de entrenamiento de IA?
  4. ¿Cuántos datos son adecuados?
  5. ¿Qué afecta la calidad de los datos en el entrenamiento?
  1. Crear red neural paso a paso
  2. Redes neuronales: Aprendizaje
  3. Otras redes neuronales
  1. Inteligencia Artificial: introducción
  2. Inteligencia de los seres vivos
  3. Inteligencia Artificial
  4. Dominios de aplicación
  5. El campo de la mecatrónica
  6. Las posibilidades de la Inteligencia Artificial
  7. Mecatrónica e Inteligencia Artificial
  1. ¿Qué es un sistema experto en polígonos?
  2. Estructura de un sistema experto
  3. Inferencia: tipos
  4. Construcción de sistemas expertos
  1. Introducción a la lógica difusa
  2. Conjuntos difusos y grados de pertenencia
  3. Operadores sobre los conjuntos difusos
  4. Creación de reglas
  5. Fuzzificación y defuzzificación
  1. Introducción a la búsqueda de rutas
  2. Rutas y grafos
  3. Algoritmos exhaustivos de búsqueda de rutas e "inteligentes"
  4. Implementación
  1. ¿Qué son los algoritmos genéticos?
  2. Evolución biológica y artificial
  3. Elección de la representación
  4. Evaluación, selección y supervivencia
  5. Reproducción: crossover y mutación
  6. Dominios de aplicación
  1. Introducción a las redes neuronales
  2. Origen biológico
  3. La neurona formal
  4. Perceptrón
  5. Redes feed-forward
  6. Aprendizaje
  7. Otras redes
  1. La visión artificial: definiciones y aspectos principales
  1. Ópticas
  2. Iluminación
  3. Cámaras
  4. Sistemas 3D
  5. Sensores
  6. Equipos compactos
  7. Metodologías para la selección del hardware
  1. Algoritmos
  2. Software
  3. Segmentación e interpretación de imágenes
  4. Metodologías para la selección del software
  1. Aplicaciones clásicas: discriminación, detección de fallos…
  2. Nuevas aplicaciones: códigos OCR, trazabilidad, robótica, reconocimiento (OKAO)
  1. Descripción general OpenCV
  2. Instalación OpenCV para Python en Windows
  3. Instalación OpenCV para Python en Linux
  4. Anaconda y OpenCV
  1. Manejo de archivos
  2. Leer una imagen con OpenCV
  3. Mostrar imagen con OpenCV
  4. Guardar una imagen con OpenCV
  5. Operaciones aritméticas en imágenes usando OpenCV
  6. Funciones de dibujo
  1. Redimensión de imágenes
  2. Erosión de imágenes
  3. Desenfoque de imágenes
  4. Bordeado de imágenes
  5. Escala de grises en imágenes
  6. Escalado, rotación, desplazamiento y detección de bordes
  7. Erosión y dilatación de imágenes
  8. Umbrales simples
  9. Umbrales adaptativos
  10. Umbral de Otsu
  11. Contornos de imágenes
  12. Incrustación de imágenes
  13. Intensidad en imágenes
  14. Registro de imágenes
  15. Extracción de primer plano
  16. Operaciones morfológicas en imágenes
  17. Pirámide de imagen
  1. Analizar imágenes usando histogramas
  2. Ecualización de histogramas
  3. Template matching
  4. Detección de campos en documentos usando Template matching
  1. Espacios de color en OpenCV
  2. Cambio de espacio de color
  3. Filtrado de color
  4. Denoising de imágenes en color
  5. Visualizar una imagen en diferentes espacios de color
  1. Detección de líneas
  2. Detección de círculos
  3. Detectar esquinas (Método Shi-Tomasi)
  4. Detectar esquinas (método Harris)
  5. Encontrar círculos y elipses
  6. Detección de caras y sonrisas
  1. Vecino más cercano (K-Nearest Neighbour)
  2. Agrupamiento de K-medias (K-Means Clustering)
Titulación
Titulación de Máster en Aplicaciones Prácticas de la Inteligencia Artificial con 1500 horas expedida por EDUCA BUSINESS SCHOOL como Escuela de Negocios Acreditada para la Impartición de Formación Superior de Postgrado, con Validez Profesional a Nivel Internacional
¡

Entidades colaboradoras

Logo Educa Logo educa edtech
Logo QS